
© 2023 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE
Visualization conference. The final version of this record is available at IEEE Xplore.

Compacting Singleshot Multi-Plane Image via Scale Adjustment
Max Bergfelt
Lund University
Keio University

Viktor Larsson
Lund University

Hideo Saito*

Keio University
Shohei Mori†

Graz University of Technology
Keio University

Figure 1: Our algorithm optimizes the placement of individual layers in singleshot MPI. (a) While the original MPI layers lay uniformly
in an arbitrarily scaled diopter space, (b) our algorithm adjusts the individual layer scales with a given depth information of dense or
sparse reconstruction from an AR-tracked camera (dark red dots). After the optimization, multiple layers with an identical location
and scale are merged into one layer, and thus, the MPI data is compressed. The right images demonstrate rendering from “ten
frames away.” Without scale adjustment (a), the rendering shows “stack-of-cards” artifacts. With our scale adjustment (b), no clear
artifacts appear.

ABSTRACT

A recent singleshot multiplane image (MPI) generation enables to
copy an observed reality within a camera frame into other reality
domains via view synthesis. While the scene scale is unknown due
to the nature of singleshot MPI processing, camera tracking algo-
rithms can estimate depth within the application world coordinate
system. Given such depth information, we propose to adjust the
scale of singleshot MPI to that of the currently observed scene. We
find the individual scales of the MPI layers by minimizing the dif-
ferences between the depth of MPI rendering and that of camera
tracking. We eventually found that many layers fall within a close
depth. Therefore, we merge such layers into one to compact the
MPI representation. We compared our method with baselines using
real and synthetic datasets with dense and sparse depth inputs. Our
results demonstrate that our algorithm achieves higher scores in
image metrics and reduces MPI data amount by up to 78%.

Index Terms: Computing methodologies—Computer graphics—
Image manipulation—Image-based rendering; Human-centered
computing—Human computer interaction (HCI)—Interaction
paradigms—Mixed / augmented reality

1 INTRODUCTION

View synthesis techniques generate novel views by interpolating
scene-registered photographs and classically known as image-based
rendering (IBR) [34]. Such techniques can capture reality and re-
produce the scene itself or scene content and therefore have been
considered one of the key technologies for virtual and augmented
reality (VR/AR) [26]. The major usages would include introduc-
ing real-world content into the virtual world (i.e., augmented vir-
tuality [21]) and real-scene analysis for better lighting and object
interactions in AR [22]. Literature has addressed an efficient and

*e-mail: hs@keio.jp
†e-mail: s.mori.jp@ieee.org

effective scene representation using scene proxies [4], camera focus
plane proxies [15], view-dependent textures [8], and deep neural
networks (DNN) [19, 20].

A modern multi-layer scene representation comprises multiple
RGB+α layers to represent a scene with point ambiguity. The layers
proxy can be a set of perpendicular planes in view frustum (i.e.,
multi-plane image; MPI) [11, 16, 19, 36] or concentric spheres (i.e.,
multi-sphere image; MSI) [1, 3] spaced uniformly in diopter space
for efficient scene coverage. Overlaying all layers from back to front
results in a complete opaque scene from a viewpoint. The volume
representation is generated via multi-view plane-sweep volume anal-
ysis using DNN. Compared to neural radiance field (NeRF) [20, 30],
multi-layer scene representation is explicit and usually requires
fewer images satisfying the sampling theory to start with. Once
generated, layers can be rendered in real time using a conventional
rasterization rendering pipeline (e.g., graphics API with alpha blend-
ing capability: OpenGL). An analogy to singleshot depth estima-
tion [18], the recent advances in DNN have enabled multi-layer
image generation from a single photograph [14, 17, 31].

Singleshot MPI generators further add the benefit for AR since
the user can immediately start scene rendering in the application by
taking one photograph. However, one drawback of the approaches
makes the usage AR practically challenging. Singleshot MPI is
estimated up to scale. Therefore, the rendered scene does not match
the real-world scale, or can be either too small or too large.

To address this issue, we propose to adjust the multi-layer scene
scale to the scene depth observed via a camera tracking system (i.e.,
simultaneous localization and mapping; SLAM). Our algorithm
can optimize individual layer scales so that MPI rendering appears
to match up with the depth appearance of the SLAM. Note that
multi-layer scene representation does not have explicit depth but
soft depth [24, 29], and therefore, only depth rendering can be a
reference for depth adjustment. We found that our individual layer
scale optimization would lead to multiple layers that fall within
a practically identical depth and scale. We further merge those
layers into one to reduce the number of layers for more compact
view synthesis. Compared to the state-of-the-art layer adjustment
approaches [14, 23], only our algorithm can reduce the data amount.

1

https://ieeexplore.ieee.org/Xplore/home.jsp

© 2023 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at IEEE Xplore.

In summary, our contributions are the following three folds.

• We propose an algorithm for individual MPI layer scale align-
ment via analyzing a given depth map and MPI depth rendered

• We further propose to merge multiple layers that fall into a
close depth level after the scale adjustment to reduce the data
amount of MPI

• We provide comprehensive evaluations using real and synthetic
data with dense and sparse depth information.

2 RELATED WORK

We review multi-layer scene representation for view synthesis. We
overview multi-layer scene representation from multi-view input and
then singleshot MPI generation, which is our main focus. Finally,
we discuss the model-scene scale fitting problem in AR.

2.1 Multi-layer Scene Representation
Multi-layer scene representation consists of a set of a fixed number
of ordered D RGB+α texture mapped proxies in diopter space [19]
(i.e., layers, li ∈ {ci,αi} (1 ≤ i ≤ D)). The additional fourth channel
can be either transparency [19] or density [17]. Depending on the
proxy shape, multi-layer scene representation can be categorized
either to MPI (i.e., multiple planes expanding from the image center
to the space) or MSI (i.e., concentric spheres). Hereafter, without
loss of generality, we use multi-layer scene representation and MPI
interchangeably as MPI is our main focus. Rather than having
explicit scene depths, MPI represents a scene point with multiple
overlapping semi-transparent pixels. The more certain the point
existence is, the more opaque the pixels are. Rendering such layers,
li, from back (i = 1) to front (i = D) with over alpha composition
results in a perspective image, I ∈ {c},

c =
D

∑
i=1

(
ciαi

D

∏
j=i+1

(1−α j)

)
. (1)

Here, we omit the layer warping using Homography from MPI view
to the current target view for brevity. MPI rendering is, by nature,
highly efficient on the conventional rasterization rendering scheme
running on GPU.

While classic approaches use color or depth analysis from given
multi-view images [24,29], recent approaches can successfully infer
MPI via differentiable renderer with DNN optimization framework
[19, 36]. Multi-view images are first converted into plane-sweep
volumes and stacked to be fed to a pre-trained network. The network
“sees” the disparities in PSV data and outputs RGB+α layers. With
given multi-view images, the scene scale is known as a baseline
length between input views.

MPI is considered as a compact form of a light field [19]. There-
fore, the plenoptic sampling theory [5] applies to MPI, and its spacial
sampling rate is D2 times more efficient in a 2D grid than that of
a raw light field [19]. Given N multi-view MPIs for broader scene
coverage and fewer invalid pixel disocclusions, we can render indi-
vidual views and blend them to complete the current view rendering.

c =
∑

N
k=1 αkck

∑
N
k=1 αk

. (2)

Contrary to recently emerged NeRF representation [20, 30], MPI
is explicit (thus human-readable and editable), highly GPU-friendly
even for low-end GPU, and thus suitable for mobile VR/AR usages.
However, MPI is more memory consuming as a single photograph
becomes D images with α components. To efficiently bound the
scene with meaningful pixel values, one may find the nearest and
furthest layer depths during an iterative optimization [23]. Our

approach, instead, is an add-on for existing singleshot MPI gener-
ator [31] and is also able to reduce the number of layers for data
compression.

2.2 Singleshot Multi-layer Scene Generation

Recent advances in DNN enabled MPI generation from a singleshot
photograph [14,31]. Such networks are trained from a massive video
dataset, in which one view is rendered using an inferred MPI warped
from another view. Similarly to singleshot DNN depth estimators
[18], only relative poses are available for the view warping, and
therefore, the scene scale is normalized during the training. As such,
MPI is estimated up to the scale.

Considering AR use cases, one may wish to estimate MPI im-
mediately after photographing the scene to start the AR application.
However, the scene scale obtained from a camera tracking system
and that of MPI are different. Therefore, an algorithm to match up
with them is necessary. Naı̈vely rendering MPI will otherwise lead
to “stack-of-cards” artifact (Figure 1a).

To solve this issue, we use MPI depth rendering and a depth map
(Figure 1b), which is often available in many AR applicationsAR-
Foundation1. Nonetheless, the latest approach, AdaMPI [14], even
infers depth-adjusted MPI layers to encourage the best pixel distribu-
tions over the layers using a DNN-inferred depth map [25]. With the
state-of-the-art DNN depth estimator, depth scale seems available
using dataset-specific fine-tuning (e.g., for KITTI [13] and NYUv2
datasets [28]). Thus, the generated MPI can be rescaled. Due to our
add-on nature to our baseline singleshot MPI generator [31], our
algorithm never reaches higher quality rendering than AdaMPI [14]
within the commonly scaled space. However, we put an emphasis
on studying our scale adjustment algorithm to investigate how well
it reduces the number of layers while keeping the rendering quality.
In other words, we expect future singleshot MPI generators that can
achieve higher quality rendering without layer scale adjustment and
adapting our algorithm to them.

2.3 Scene-Map Scale Adjustment for AR

3D scene reconstructions (e.g., point clouds or dense reconstruction)
from structure from motion (SfM) algorithms [27] and SLAM sys-
tems [10] are arbitrarily scaled without a common metric given by
inertia sensor, stereo system, or a runtime scale adjustment algorithm.
For AR applications, an internal tracking system and preserved map
information do not match without scale adjustment. A typical exam-
ple is to register the AR camera to the saved map data created using
a different system [33].

Similarly to the scene-map scale adjustment, our goal is to imple-
ment a scene-MPI scale adjustment algorithm. The current scene
scale is given by undergoing SLAM in an AR application. Therefore,
we use SLAM map projection within the MPI generated view. We
match the depth frame and MPI depth rendering since MPI does not
have explicit depth but a depth map rendering instead.

3 THE PROPOSED METHOD

Our pipeline follows the five steps below (Figure 2):

1. Single-view MPI generation (e.g., [17, 31])

2. Scene depth calculation (SLAM [10] or SfM [27])

3. MPI depth rendering (Section 3.1)

4. Layer scaling (Section 3.2)

5. MPI rendering (Section Equation 1)

1https://unity.com/unity/features/arfoundation

2

https://ieeexplore.ieee.org/Xplore/home.jsp
https://unity.com/unity/features/arfoundation

© 2023 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at IEEE Xplore.

Figure 2: Pipeline. Our depth adjustment algorithm receives a scale-
ambiguous singleshot MPI (e.g., from [31]) and a metric-scale depth
map (e.g., from DepthLab [10]) and [25]) and outputs a metric-scale
MPI with a reduced number of layers.

3.1 MPI Depth Rendering
We adjust individual MPI layer scales (i.e., depths) using MPI depth
rendering, dMPI, (e.g., [31]) and the corresponding external scene
depth information using a SLAM tool, dSLAM, (e.g., [10]). As
demonstrated by Tuker et al. [31], rendering MPI with its depth
pixels di or inverse depth d−1

i generates a depth or disparity map,
respectively, using the over operation in equation 1. For a depth map
rendering, we can rewrite equation 1 as

dMPI =
D

∑
i=1

(
diαi

D

∏
j=i+1

(1−α j)

)
. (3)

Further rewriting the α value related terms as a constant value, ci,
we further simplify the equation as

dMPI =
D

∑
i=1

dici = d · c. (4)

3.2 Individual Layer Scaling
The strategy for individual layer depth calculation is to use SLAM
depth information, dSLAM, as a set of reference depth values, and
minimize the error between the rendered depths, dMPI, and the
reference depths, dSLAM. To this end, we collect all N rendered
depth pixels where the corresponding SLAM depth pixels exist and
construct an N×D matrix of constants of c, A, to solve the following
linear equation,

dMPI = Ad. (5)

Therefore, we solve the following for d = (d1,d2, ...,dD)
⊺ of

layer depths,
min

d
|dSLAM −dMPI|. (6)

Linear Constraints. Optimization of equation 3.2 without any
reasonable constraints may result in negative depth values (i.e., lay-
ers existing back of the camera frustum) or shuffled-order layers. To
avoid such inconvenient layers, we set the following two constraints
for solving equation 3.2,

min
d

|dSLAM −dMPI| s.t. di ≥ 0, di ≥ di+1. (7)

Namely, we force the solver not to take negative depth values
(i.e., di ≥ 0) and keep the order (i.e., di ≥ di+1). The strict inequality
is not used for the zero constraints to allow redundant layers to be
removed from the rendering. Likewise, strict inequalities are not
used for the ordering constraint either. As long as the rendering
order of the layers is preserved, layers placed at the same depth do
not cause a problem. It should also be noted that an upper limit
constraint for the depths would be excessive. Since all rows of
A sum to 1, any layer depth value is naturally constrained to the
maximum value of d, the highest value of the ground truth depth
map.

Solver. For solving the constraint linear problem, we use an
implementation of the alternating direction method of multipliers
(ADMM) [2]. ADMM optimizes one variable at a time while keep-
ing the others fixed and uses dual variables to enforce constraints.
The implementation used proximal operators and a solver was con-
structed using the python package proxop [6].

3.3 Layer Merging
We found that the optimization often resulted in adjacent layer depths
with the same depth values due to the design of the linear problem
and in particular the ordering constraint. Each time an optimal
solution lies close enough to the edge of this constraint, the optimal
solution within the constrained set will lie right on the edge, placing
the layers at the same depth.

We merge such layers into one layer to reduce the total number
of layers in MPI. We, therefore, render a new layer in the same way
as the adjacent layers would be rendered using equation 1. For two
images, {C1,α1} and {C2,α2}, the resulting new image is calculated
by

c1,2 =
c1α1(1−α2)+ c2α2

α2

α1,2 = α2 +α1(1−α2).

(8)

Performing the algorithm iteratively on all layers placed at the
same depth in a front-to-back manner allows an arbitrary number
of images to be merged. Since this merging step can be seen as a
pre-rendering for the layers of the MPI that contribute with the same
perspective effects, it will result in no loss of image quality or visual
effects in the MPI. Any image rendered from the MPI will be the
same regardless if the layers are merged in advanced, or rendered at
the same position during run-time. The advantage of layer merging,
however, is the MPI file size compression.

4 EVALUATIONS

There are only a few attempts of singleshot MPI generator without
layer scaling during the inference [17, 31], from which we selected
the first implementation by Tuker et al. [31] as our core MPI genera-
tor that has been widely tested with the provided pre-trained weights.
Our goal here is to evaluate visual quality when a rendering camera
moves in a metric scale and compare our approach with baseline
depth adjustment approaches. We also measure compression rates
after our algorithm is applied to datasets.

4.1 Baseline Scaling Algorithms
We prepared two different baselines.

Uniform scaling To design scene-independent scaling, we scale
MPI layers uniformly so that the layers lay within the fixed minimum
and maximum depth range,

d′
i =

1

1/dmax +
(1/dmin−1/dmax)(i−1)

D−1

, (9)

where d′
i , dmin, and dmax are the scaled layer depth, the minimum

layer depth, and the maximum layer depth, respectively. We set

3

https://ieeexplore.ieee.org/Xplore/home.jsp

© 2023 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at IEEE Xplore.

Table 1: Dataset summary.

Modality Synthetic Real

Core dataset 3D-FRONT
(BlenderProc) RealEstate10K

Scenes 17 38
Number of MPI 615 (X̄ = 36.2(8.8)) 667 (X̄ = 17.6(3.8))
Frame interval 5 cm 5 frames
Depth data Dense depth map Sparse points

dmin = 1m and dmax = 100 m, which are the default values in the
original implementation2.

Min-max scaling Similarly to the Uniform scaling, the Min-
max scaling takes the minimum and maximum depth observed in
the scene. Namely, we set dmin and dmax in equation 4.1 to the mini-
mum and maximum depth values obtained from a SLAM system,
respectively.

4.2 Datasets
We used real and synthetic datasets. Table 1 summarizes our syn-
thetic and real datasets.

Synthetic dataset. To have full control over camera parameters
and color and depth images as ground truth of our algorithm, we
created a synthetic dataset, although image quality is less promising
and far from the trained feature domain for our core MPI generator
[31].

We used BlenderProc2 [9] in combination with 3D furnished
rooms with layouts and semantics (3D-FRONT) [12] to generate
our synthetic image dataset. BlenderProc2 is a pipeline for the open
source computer graphics software Blender [7]. The software al-
lows the photorealistic rendering of Blender scenes for the sake of
training convolutional neural networks. 3D-FRONT [12] provides
various fully furnished high-quality textured indoor environments.
We chose the assets because of their similarities to the real image
RealEstate10K dataset [36], on which our core singleshot MPI gen-
erator [31] was trained. We rendered 17 different scenes with a
camera moving horizontally to create motion stereo views (i.e., at 5
cm and 10 cm aside from the original viewpoint). We consequently
generated 615 MPI in total.

To ensure that generated synthetic images would work well with
the network model, the camera parameters were set up to mimic
the training data for the pre-trained model, the YouTube videos in
RealEstate10K [36]. Upon the camera intrinsic parameters provided
in RealEstate10K dataset, most clips are in a 16:9 aspect ratio. From
this fact, we end up with the typical field of view for the cameras
as 90◦ horizontally and approximately 59◦ vertically. The synthetic
images were generated at a 512×512 resolution and to make this
consistent with the training data, both the horizontal and vertical
field of view was set to the minimum 59◦. In other words, we gener-
ated images to be identical to those in a 16:9 aspect ratio at a 90◦
horizontal and 59◦ vertical field of view that are then cropped to
a 1 : 1 aspect ratio. In addition, a multiple of 128 pixel resolution
allows the model to be used without any padding or cropping. Fi-
nally, we generated a pair of color and depth images together with
the intrinsic and extrinsic parameters.

Real dataset. We used a part of the RealEstate10K dataset [36],
whose camera motions are random. To extract data for MPI genera-
tion, the text files in the dataset were processed and the correspond-
ing frames were downloaded from the YouTube videos. While the
authors of the dataset made their best effort to select sequences with-
out blurry and distorted artifacts and as well as editing effects, some
of the downloaded frames still contained large font descriptive texts

2https://single-view-mpi.github.io/

Figure 3: MPI depth rendering in comparison with the synthetic ground
truth. Our depth optimization using dense depth points captures the
better scene structure in the appearance (right) compared to that of
the second-best scored Min-max scaling approach (middle).

Figure 4: MPI depth and color rendering for qualitative comparisons
in the real dataset. Our depth optimization using sparse depth points
results in a higher quality with fewer “stack-of-cards” artifacts (top)
both in depth (left) and color (right) MPI rendering when compared to
the second-best scored Uniform approach (bottom).

and transition effects (e.g., fading out at the end of the sequence).
We, therefore, manually sorted out such frames.

For the selected frames, we downloaded every fifth frame, result-
ing in between 10 and 25 images per sequence. The reason for this
was to mimic the test data that [31] used to test their model, which
consisted of images extracted from every 5 and 10 frames in the
video sequences. We extracted 667 MPI over 38 scenes overall. For
depth information at the frames, we project sparse point clouds to
the frames.

4.3 Evaluation Metrics

Image quality metrics. We measured peak signal-to-noise ra-
tio (PSNR), structural similarity index measure (SSIM) [32], and
learned perceptual image patch similarity (LPIPS) [35] between the
ground truth and rendered MPI.

Due to the perspective nature of Homography upon MPI render-
ing, blank pixels would appear around the image borders. To remove
such unnecessary deterioration from the evaluations, we cropped 5%
of the image at each side.

Layer reduction ratio. To measure how much our algorithm
can save the amount of MPI data, we compute the number of MPI
layers with our algorithm applied over that of the original.

4.4 Results

Rendering quality Table 2 and 3 summarize the results of the
image quality metrics. All approaches show decreased scores with
larger baselines both in our synthetic and real datasets. While our
depth optimization approach achieved the best mean scores in both
datasets, the second-best-scored approach is different depending on

4

https://ieeexplore.ieee.org/Xplore/home.jsp
https://single-view-mpi.github.io/

© 2023 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at IEEE Xplore.

Table 2: Synthetic scene results.

Algorithm Baseline PSNR (↑) SSIM (↑) LPIPS (↓)

Uniform 5 cm 26.1 0.877 0.103
10 cm 23.4 0.833 0.164

Min-max 5 cm 27.1 0.890 0.095
10 cm 24.2 0.848 0.144

Ours 5 cm 28.9 0.919 0.085
10 cm 25.9 0.880 0.115

Table 3: Real scene results.

Algorithm Baseline PSNR (↑) SSIM (↑) LPIPS (↓)

Uniform 5 frames 22.6 0.727 0.162
10 frames 20.0 0.649 0.237

Min-max 5 frames 20.6 0.664 0.209
10 frames 18.2 0.585 0.293

Ours 5 frames 23.7 0.763 0.133
10 frames 21.1 0.687 0.188

Table 4: Layer reduction summary.

Dataset Number of layers Reduction ratio (%)
Total Per view

Synthetic Original 19,648 32.0 (0.0) 0.0 (0.0)
Ours 5,245 8.5 (2.2) 73.3 (6.8)

Real Original 21,504 32.0 (0.0) 0.0 (0.0)
Ours 4,300 6.4 (2.6) 78.7 (8.8)

the image modality. For the synthetic dataset, Min-max takes the
second-best and, for the real dataset, Uniform did so.

Figure 3 and 4 present qualitative results of depth rendering in the
synthetic dataset and depth and color rendering in the real dataset,
respectively. With our algorithm, the depth values appear reasonably
distributed, showing a clearer scene structure.

Layer reduction Table 4 shows a summary of the layer reduc-
tion results. Overall, more layer depths were placed at the same
depths in the real dataset than the synthetic dataset. The variance was
also greater. The maximum average size reduction for a single scene
in the real dataset was 91.7% compared to 80.1% in the synthetic
dataset. The minimum average reduction in a scene, however, was
found in the synthetic dataset at 63.9% compared to the minimum of
65.6% in the real dataset. In the real dataset 3.9% of all MPI were
reduced to two layers or less while the same number in the synthetic
dataset was 0.16%. The same numbers for three layers or less were
12.4% and 1.0%, respectively. The minimum amount of layers in
any MPI after reduction in the synthetic dataset was 15 and 14 in
the real dataset.

5 LIMITATIONS AND FUTURE WORK

Our approach accomplishes scale adjustments of individual MPI
layers and successfully reduces the MPI data amount. However, we
observe some limiting factors in rendering quality.

Inaccurate real scene depth points. Min-max scaling per-
forms better than Uniform scaling in the synthetic dataset, while
in the real dataset, Uniform scaling works better in image quality
metrics. We speculate that inaccurate depth points in the real dataset
made Min-max scaling unstable. On the other hand, Uniform scaling
is ultimately independent of the scene depth.

Sparse points from a SLAM system depend on the scene de-
tails and can unevenly distribute over the field of view. Therefore,

Figure 5: Failure case. Although well-distributed depth points exist
(left), our approach falsely presents blurry artifacts. In this example,
ours shows a strong MPI quality-dependency (right). The Uniform
scaling approach, which is ultimately stable over the frames, would
be more suitable for such scenes.

texture-rich areas are weighted more than texture-less areas in the
optimization. However, scenes with evenly distributed SLAM points
make MPI inference challenging in general, and therefore, our op-
timization tends to be fragile anyway. Figure 5 shows a typical
example of such cases. Note that the network [31] is trained on real
estate images, while the scene shows a wooden house in a forest.

Inaccurate MPI depth rendering. MPI depth rendering can be
squashed or rough compared to the actual details in a depth map. In
other words, different depths can appear in an area with similar val-
ues in MPI depth rendering, or similar depths can appear in different
pixels in depth rendering, both of which make the layer placement
ambiguous. Our insights, however, can be network-specific.

Optimization constraints. Although the optimization con-
straints are necessary for reasonable layer placements, they may
also infer a limitation. Due to the constraint for layer order, one
layer can stop the other layer, and therefore, one layer at a non-
optimal layer can also force the other layers at non-optimal depths.

6 CONCLUSION

We present an algorithm to adjust the scales of individual MPI layers
so that the appearance of MPI depth rendering matches the depth
points from a tracking system. We further propose to merge multiple
MPI layers at the same resultant depth to reduce the data amount.
We evaluated our approach in the synthetic dataset with ground truth
dense depth maps and the real dataset with sparse depth points. Our
results demonstrate that our approach achieves the best performance
in comparison with two baseline approaches of uniform scaling and
min-max depth-based scaling. After reducing the layer numbers, the
resultant MPI is 73.3 % and 78.7 % less data size in the synthetic
and real datasets, respectively.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund FWF (grant
no. P33634).

REFERENCES

[1] B. Attal, S. Ling, A. Gokaslan, C. Richardt, and J. Tompkin. Ma-
tryodshka: Real-time 6dof video view synthesis using multi-sphere
images. In Proc. European Conference on Computer Vision (ECCV),
pp. 441–459. Springer, 2020.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning, 3:1–122,
01 2011.

[3] M. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. Duvall,
J. Dourgarian, J. Busch, M. Whalen, and P. Debevec. Immersive light
field video with a layered mesh representation. ACM Transactions on
Graphics (TOG), 39(4):86–1, 2020.

[4] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen. Unstruc-
tured lumigraph rendering. In Proc. Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH), pp. 425–432, 2001.

5

https://ieeexplore.ieee.org/Xplore/home.jsp

© 2023 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at IEEE Xplore.

[5] J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum. Plenoptic sampling.
In Proc. Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), pp. 307–318, 2000.

[6] G. Chierchia, E. Chouzenoux, P. L. Combettes, and J.-C. Pesquet. The
proximity operator repository. user’s guide, 2020.

[7] B. O. Community. Blender - A 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[8] P. Debevec, Y. Yu, and G. Borshukov. Efficient view-dependent image-
based rendering with projective texture-mapping. In Rendering Tech-
niques: Proc. the Eurographics Workshop, pp. 105–116. Springer,
1998.

[9] M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D. Olefir,
M. Elbadrawy, A. Lodhi, and H. Katam. Blenderproc. arXiv preprint
arXiv:1911.01911, 2019.

[10] R. Du, E. Turner, M. Dzitsiuk, L. Prasso, I. Duarte, J. Dourgarian,
J. Afonso, J. Pascoal, J. Gladstone, N. Cruces, S. Izadi, A. Kowdle,
K. Tsotsos, and D. Kim. Depthlab: Real-time 3d interaction with depth
maps for mobile augmented reality. In Proc. ACM Symposium on User
Interface Software and Technology (UIST), UIST ’20, pp. 829–843.
ACM, 2020.

[11] J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck,
N. Snavely, and R. Tucker. Deepview: View synthesis with learned
gradient descent. In Proc. Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2367–2376, 2019.

[12] H. Fu, B. Cai, L. Gao, L.-X. Zhang, J. Wang, C. Li, Q. Zeng, C. Sun,
R. Jia, B. Zhao, et al. 3d-front: 3d furnished rooms with layouts and
semantics. In Proc. International Conference on Computer Vision
(ICCV), pp. 10933–10942, 2021.

[13] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Proc. Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361.
IEEE, 2012.

[14] Y. Han, R. Wang, and J. Yang. Single-view view synthesis in the
wild with learned adaptive multiplane images. In Proc. Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH), 2022.

[15] A. Isaksen, L. McMillan, and S. J. Gortler. Dynamically reparame-
terized light fields. In Proc. Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH), pp. 297–306, 2000.

[16] R. Ishikawa, H. Saito, D. Kalkofen, and S. Mori. Multi-layer scene
representation from composed focal stacks. IEEE Transactions on
Visualization and Computer Graphics (TVCG), 2023.

[17] J. Li, Z. Feng, Q. She, H. Ding, C. Wang, and G. H. Lee. Mine:
Towards continuous depth mpi with nerf for novel view synthesis. In
Proc. International Conference on Computer Vision (ICCV), 2021.

[18] Z. Li and N. Snavely. Megadepth: Learning single-view depth predic-
tion from internet photos. In Proc. Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2041–2050, 2018.

[19] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ra-
mamoorthi, R. Ng, and A. Kar. Local light field fusion: Practical view
synthesis with prescriptive sampling guidelines. ACM Transactions on
Graphics (TOG), 2019.

[20] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng. Nerf: Representing scenes as neural radiance fields for
view synthesis. In Proc. European Conference on Computer Vision
(ECCV), 2020.

[21] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino. Augmented
reality: A class of displays on the reality-virtuality continuum. In
Telemanipulator and telepresence technologies, vol. 2351, pp. 282–
292. SPIE, 1995.

[22] S. Mori, O. Erat, W. Broll, H. Saito, D. Schmalstieg, and D. Kalkofen.
Inpaintfusion: Incremental rgb-d inpainting for 3d scenes. IEEE Trans-
actions on Visualization and Computer Graphics (TVCG), 26(10):2994–
3007, 2020.

[23] J. Navarro and N. Sabater. Deep view synthesis with compact and
adaptive multiplane images. Signal Processing: Image Communication,
107:116763, 2022.

[24] E. Penner and L. Zhang. Soft 3d reconstruction for view synthesis.
ACM Transactions on Graphics (TOG), 36(6):1–11, 2017.

[25] R. Ranftl, A. Bochkovskiy, and V. Koltun. Vision transformers for
dense prediction. In Proc. International Conference on Computer

Vision (ICCV), pp. 12159–12168, 2021.
[26] D. Schmalstieg and T. Höllerer. Augmented Reality: Principles and

Practice. Addison-Wesley Professional, 2016.
[27] J. L. Schönberger and J.-M. Frahm. Structure-from-motion revisited. In

Proc. Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[28] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation
and support inference from rgbd images. Proc. European Conference
on Computer Vision (ECCV), 7576:746–760, 2012.

[29] R. Szeliski and P. Golland. Stereo matching with transparency and
matting. International Journal of Computer Vision (IJCV), 32(1):45–
61, 1999.

[30] A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, Z. Xu, T. Si-
mon, M. Nießner, E. Tretschk, L. Liu, B. Mildenhall, P. Srinivasan,
R. Pandey, S. Orts-Escolano, S. Fanello, M. Guo, G. Wetzstein, J.-Y.
Zhu, C. Theobalt, M. Agrawala, D. B. Goldman, and M. Zollhöfer.
Advances in neural rendering. In ACM SIGGRAPH 2021 Courses,
SIGGRAPH ’21. Association for Computing Machinery, New York,
NY, USA, 2021.

[31] R. Tucker and N. Snavely. Single-view view synthesis with multi-
plane images. In Proc. Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[32] Z. Wang, A. Bovik, and H. Sheikh. Structural similarity based image
quality assessment. Digital Video Image Quality and Perceptual Cod-
ing, Ser. Series in Signal Processing and Communications, 11 2005.

[33] M. Yamaguchi, T. P. Truong, S. Mori, V. Nozick, H. Saito, S. Yachida,
and H. Sato. Superimposing thermal-infrared data on 3d structure
reconstructed by rgb visual odometry. IEICE Trans. on Information
and Systems, 101(5):1296–1307, 2018.

[34] C. Zhang and T. Chen. A survey on image-based render-
ing—representation, sampling and compression. Signal Processing:
Image Communication, 19(1):1–28, 2004.

[35] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The
unreasonable effectiveness of deep features as a perceptual metric. In
CVPR, 2018.

[36] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo magni-
fication: Learning view synthesis using multiplane images. In ACM
Transactions on Graphics (TOG), July 2018.

6

https://ieeexplore.ieee.org/Xplore/home.jsp

	Introduction
	Related Work
	Multi-layer Scene Representation
	Singleshot Multi-layer Scene Generation
	Scene-Map Scale Adjustment for AR

	The Proposed Method
	MPI Depth Rendering
	Individual Layer Scaling
	Layer Merging

	Evaluations
	Baseline Scaling Algorithms
	Datasets
	Evaluation Metrics
	Results

	Limitations and Future Work
	Conclusion

