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Abstract: 3D imaging combining a focal stack and multi-plane images (MPI) facilitates various real-time applications,
including view synthesis, 3D scene editing, and augmented and virtual reality. Building upon the foundation
of MPI, originally derived from multi-view images, we introduce a novel pipeline for reconstructing MPI by
casually capturing a focal stack optically using a handheld camera with a manually modulated focus ring.
We hypothesized two distinct strategies for focus ring modulation that users could employ, to sample defocus
images along the front-facing axis uniformly. Our quantitative analysis using a synthetic dataset suggests ten-
dencies in possible simulated errors in focus modulations, while qualitative results illustrate visual differences.
We further showcase applications utilizing the resultant MPI, including depth rendering, occlusion-aware de-
focus filtering, and de-fencing.

1 INTRODUCTION

A focal stack is a series of images optically focused at
different distances. A focal stack is known as an ap-
proximated representation of a set of multi-view im-
ages on a 2D grid, or a light field, that can reproduce
ambient surfaces from the captured range (Pérez et al.,
2016). As such, focal stack imaging has been applied
to light field displays (Takahashi et al., 2018), all-in-
focus image generation (Kim et al., 2016), and free-
viewpoint image synthesis (Ishikawa et al., 2023).
Taking a focal stack often involves systematic focus
changes to enable such useful applications and thus
requires synthetic approaches or controllable optics.

One method is to synthesize approximated blur
over an all-in-focus image using depth-dependent blur
kernels (Kim et al., 2016) or through neural render-
ing techniques (Wu et al., 2022). Another method in-
volves synthetic aperture photography, achieving syn-
thetic yet optically accurate blur from multi-view ob-
servations (Vaish et al., 2004). Optical solutions in-
clude mechanical lenses (Subbarao and Choi, 1995),
focus tunable lenses (Ebner et al., 2022), and shifting
image sensors (Kuthirummal et al., 2011). However,
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the majority of cameras on the market does not have
such functionalities, while finding kernels for blur-
ring all-in-focus images is not trivial (Abuolaim et al.,
2021).

We focus more on the user who manually twists
a lens focus ring to take a focal stack. We investi-
gate two different strategies (1) continuous-rotation,
where the user holds and rotates the ring as linearly as
possible and (2) delta-rotation, where the user repeats
stop and rotate like a clock tick, during a video record-
ing. To select a better approach, we create a syn-
thetic dataset to simulate potential errors from the two
different strategies. Spatial misalignment from hand-
shakes is corrected using direct image alignments.

Based on the multi-plane image (MPI) from syn-
thetic aperture photography (Ishikawa et al., 2023),
we generate an MPI from a casually photographed
focal stack. Therefore, our applications include ones
that MPI can support, such as all-in-focus view syn-
thesis, depth rendering, per-layer defocus, and de-
fencing, as we demonstrate in this paper. In summary,
we present the following contributions to MPI gener-
ation from an optically captured focal stack:

• We present a pipeline for generating an MPI from
a casually captured focal stack (Figure 1(a–d)),

• investigate how two different focal stack imaging strate-
gies with a handheld camera (i.e., continuous-rotation
and delta-rotation) can impact the MPI rendering qual-



Figure 1: Pipeline of MPI generation from a casual focal stack with a manually controlled camera. (a) The user takes a focal
stack either by rotating the focus ring at once in a sequence (continuous-rotation) or by repeating rotating and stopping the
focus ring for a short interval (delta-rotation). We discuss which approach is better regarding MPI rendering quality in our
experiment. (b) A vision technique corrects spatial misalignment over the focal stack images. (c) A fixed number of focal
stack images is selected. (d) A U-Net that is trained by analysis by synthesis generates MPI. (e) Applications include depth
rendering, per-layer defocus for occlusion-aware depth of field effect, and de-fencing.

ity on a synthetic dataset (Figure 1(a)),

• and demonstrate real use cases using a camera in real
scenes (Figure 1(e)).

2 RELATED WORK

We overview three related domains to our research to
provide a rationale for employing casual focal stack
imaging in the context of MPI generation.

2.1 Casual Photography

Casual 3D photography (Hedman et al., 2017) has
been an attractive research topic that aims to re-
duce users’ workload and mental demands. A typi-
cal example is panorama image capture with a mo-
bile phone, which presents instant visual feedback
and guidance, such as intermediate image stitching re-
sults and the rectangular representing the current field
of view on the screen (Wagner et al., 2010).

For light field imaging, 3D annotations with
prominent colors are often used. 3D annotations in-
clude 3D axes floating in the air as reference camera
poses (Mildenhall et al., 2019), a 3D plane suggesting
a free-form capture area (Ishikawa et al., 2023), a 3D
dome visualizing the current coverage (Mohr et al.,
2020; Davis et al., 2012), a 1D trajectory for a rota-
tion camera motion like panorama imaging (Tomoto
et al., 2020), and hitting a dodging virtual ball to gam-
ify the capturing (Birklbauer and Bimber, 2015).

No specific visual guidance is needed if the cap-
ture motion is simple. This can include rotating a
hand-held camera with a stretched arm (Baker et al.,
2020), moving around with a 360 camera that cap-

tures a wide range of the scene at once (Bertel et al.,
2020), or when only a single shot (Han et al., 2022)
or a few images (Khan et al., 2023) are required.

We also employ an approach without visual guid-
ance. The task for the user in our focal stack photog-
raphy is to continuously and uniformly rotate a cam-
era focus ring to cover the entire scene. We examine
two different approaches to see their impact to MPI
generation and rendering.

2.2 Focal Stack Imaging

A focal stack is a series of images focused at different
distances. Since multiple rays pass through a camera
lens to form an image, a structurally captured focal
stack is potentially an approximated light field (Pérez
et al., 2016). A focal stack can be recorded with a
modulated varifocal lens (Ebner et al., 2022) and a
shifting image sensor (Kim et al., 2016), or syntheti-
cally with a synthetic aperture photography technique
(Ishikawa et al., 2023).

All of the above works employ pre-calibrated
hardware (Ebner et al., 2022; Kim et al., 2016) or
a synthetically fully-controlled approach (Ishikawa
et al., 2023). In contrast, our approach utilizes a
handheld camera equipped with a manually modu-
lated lens that introduces novel challenges in algorith-
mic design decisions and capture guidelines. We in-
vestigate two different focal stack capture strategies
to derive an improved solution that ensures uniform
scene coverage, thereby suppressing artifacts in MPI.

2.3 Multi-layer Scene Representation

Multi-layer scene representation employs a collection
of RGB+α images mapped onto meshes to slice over



the scene. This technique is commonly referred to as
MPI (Szeliski and Golland, 1999) or multi-sphere im-
ages (MSI) (Broxton et al., 2020). MPI represents the
camera view frustum, and MSI envelops the viewer
(i.e., a panoramic view). The data structure is ex-
plicit and thus directly editable (Mori et al., 2023)
and fast to render with less capable graphics hard-
ware. These characteristics are considered preferable
for augmented reality (AR) and virtual reality (VR)
applications (Ishikawa et al., 2023).

A deep neural network can infer MPI or MSI from
a perspective (Han et al., 2022), stereo (Khakhulin
et al., 2022), multi-view images (Mildenhall et al.,
2019), and a focal stack (Ishikawa et al., 2023). We
derive MPI from a focal stack similar to Ishikawa et
al. (Ishikawa et al., 2023), while they focus on theo-
retical bounds to form a focal stack from multi-view
images and evaluation of denoising aspects. Contrary
to the work, our research interest lies in the recording
process of a focal stack using a handheld camera with
a manually modulated lens.

3 MULTI-PLANE IMAGE FROM
A FOCAL STACK PIPELINE

Figure 1 illustrates our proposed pipeline of MPI gener-
ation from a casual focal stack. Given camera parame-
ters, we calculate the supported minimum and maximum
range. The user, therefore, takes a focal stack within that
range, either by rotating the focus ring at once in a sequence
(continuous-rotation, Figure 1(a) bottom-left) or by repeat-
ing rotating and stopping the focus ring for a short interval
(delta-rotation, Figure 1(a) bottom-right). The captured fo-
cal stack images are aligned by homography warping be-
tween adjacent frames (Figure 1(a, b)). Only a necessary
number of focal stack images is selected (Figure 1(b, c)) to
generate an MPI using a U-Net-like network that is trained
by analysis by synthesis (Figure 1(c, d)).

3.1 Focal Stack Photography Strategies

Cameras do not save focus distances at every frame while
recording focus-modulated videos. Therefore, we record
only the first and the last focus distances and calculate the
in-between focus distances by uniformly dividing the mini-
mum and maximum inverse depth difference by the number
of required focal stack images. However, we have observed
that the strategies employed in photography can impact the
linearity of focus modulation. Consequently, we developed
two strategies to ensure evenly spaced focus distances.

Continuous-rotation. One straightforward strategy is
photographing a focal stack by rotating the focus ring from
the minimum to maximum distances in one continuous
motion. Major concerns of this approach include user-
dependent accuracy in linearity and several separate mod-

Figure 2: Two focal stack photography strategies. (a) The
user may photograph a focal stack either by rotating the fo-
cus ring from the minimum to the maximum distances or
by M times. (b) When the focus range is vast, the user may
fail to rotate the ring at once and repeat rotating it with large
intervals (continuous-rotation). (c) To avoid such a large in-
terval, the user may rotate the ring by small steps until the
maximum focus distance is reached (delta-rotation).

ulations when the focus range is vast and the user fails to
rotate the ring in a single motion (Figure 2(a, b)).

Delta-rotation. The second strategy is designed to over-
come the first approach. The focus ring is rotated in small
steps until the maximum distance is reached from the min-
imum distance. Such an approach would introduce varia-
tions in the rotation speed and steps and quantization errors
depending on the size of the steps.

3.2 Metadata-Based Thinning

We use N defocus images from a focal stack video as the
input of our network. Such images must comprehensively
traverse the scene depth so that every pixel appears sharp in
focus at least one of the images. Ishikawa et al. derived the-
oretical bounds for the synthetic aperture size using camera
parameters and depth range (Ishikawa et al., 2023). Con-
versely, we derive the depth range from a fixed lens aperture
size and camera parameters. Given an aperture size A with
camera field of view θ f ov, camera image width in pixels
Wpx, and the number of layers of the focal stack N, the min-
imum focus distance dmin and the maximum focus distance
dmax are constrained by the following equation:

1
dmin

− 1
dmax

≤
4Cpx tan(θ f ov/2)(N −1)

AWpx
, (1)

where Cpx is the maximum circle of confusion in pixels,
which is 1 for the highest quality. When the shooting set-
tings are fixed, the aperture size and camera parameters are
obtained. Once the user sets the minimum distance, the
maximum distance can be calculated accordingly (and vice
versa). Figure 3 shows the supported depth ranges with
N = 32, Wpx = 1920 depending on the shooting settings (fo-
cal length and f-number).



Figure 3: Supporting depth ranges for N = 32 and Wpx =
1920 pixels depending on the aperture sizes.

We sample N images from the focal stack video so
that the inverse distances are as equally spaced as possible
based on the assumption that the focus distance of a series
of frames moves at equal intervals between the determined
dmin and dmax.

3.3 Focal Stack Alignment

Taking a focal stack in a sequence induces camera shaking
and leads to misaligned images over time. Such misalign-
ment must be corrected to avoid visual artifacts in the resul-
tant MPI (Figure 4). Since differences in depth of field blur
between two images are significant, we implement the di-
rect alignment method that estimates Homography warping
between two images, Ii and Ii+1, so that the overall differ-
ence in pixel colors gets minimum after applying the warp-
ing, Ii (H(·)), (Baker and Matthews, 2004).

argmin
p ∑

x
[Ii (H(x;p+∆p))− Ii+1(x)], (2)

where x = (x,y)⊤ is a 2D pixel location, p =

(p1, p2, ..., p8)
⊤ and ∆p = (δp1,δp2, ...,δp8)

⊤ are a vector
of Homography parameters and incremental parameters to
be estimated, respectively. We repeat this process for every
pair of i and i+1 with the minimum appearance differences
in depth of field effects.

We focused on static scenes for brevity. For dynamic
scenes, however, pixel-wise alignment is necessary. For
such cases, we refer to the approaches (Ebner et al., 2022;
Kim et al., 2016) based on the PatchMatch algorithm
(Barnes et al., 2009).

3.4 Multi-Plane Image Generation

We used the same network architecture as Ishikawa et al.
(Ishikawa et al., 2023) but trained it with a different loss
function for efficiency. Given a light field (i.e., multi-view)
dataset, we train our network with analysis by synthesis at
five views (Figure 5). We first synthesize a focal stack from
the center view at the N calculated focus distances. The syn-
thesized N-layer focal stack is provided to the U-Net-like
CNN. The network outputs N-layer MPI at the center view.

Figure 4: Misalignment and correction. All results here
show MPI rendering. A shaky focal stack results in erratic
MPI (top left), while alignment effectively suppresses the
artifacts (top right). Stably rotating a focus ring is practi-
cally challenging even with a tripod (bottom left), and thus,
alignment is still superior to have (bottom right).

Figure 5: Training by synthesis. We compose a focal stack
from a light field and generate an MPI from the focal stack
via a U-Net like network. A differentiable renderer renders
five views to calculate the loss. As illustrated in the figure,
we use the center, top, bottom, right, and left views.

Each MPI layer consists of an RGBα image with the same
height and width as the focal stack images. We assume the
output MPI layers are evenly spaced in inverse depth be-
tween dmin and dmax. A differentiable renderer synthesizes
a novel view by over alpha composition from back to the
front layers (Porter and Duff, 1984).

We designed a loss function, L , and minimized the
overall loss at five viewpoints inside the aperture, Vre f of
center, top, bottom, right, and left views,

argmin
W ∑

v∈Vre f

(L(R v(IMPI), Iv
gt)+L(R v(I′MPI), Iv

gt)), (3)

where R v(IMPI) and R v(I′MPI) represent a rendered image
from a viewpoint v with an MPI and from a viewpoint v with
an MPI whose colors are replaced with those of the original
focal stack input, respectively. Iv

gt represents ground-truth
image from a viewpoint v.

L consists of the L1 loss LL1 and the perceptual loss
with the backbone of VGG16 (Liu and Deng, 2015) LPercept
as

L = LPercept +λLL1, (4)

with λ = 0.1 for our experiment.

3.5 View Synthesis

View synthesis, R v(I′MPI), is available within the aperture
range (i.e., the A/2 radius range from the center viewpoint)
after generating an MPI.



Figure 6: An example frame from the synthetic dataset and
our synthetic aperture setup. (a) We place Thingi10K ob-
jects randomly to fill in the field of view. (b) We place
11×11 light field views depicted as grids. The red and blue
rectangles represent views for testing. In particular, the blue
rectangles filled in green and pink represent the reference
viewpoints (green for top-left view, pink for bottom-right
view) in Figure 9. The yellow band shows views used to
create the Epipolar images in Figure 7.

4 EVALUATIONS

We evaluated how much the potential errors in two focal
stack photography strategies affects the quality of generated
MPI on both synthetic focal stacks and real focal stacks.

4.1 Dataset

We created a 11 × 11 light field dataset rendered using
Blender (Community, 2018), from which we synthesize
focal stacks using synthetic aperture photography (Vaish
et al., 2004; Ishikawa et al., 2023). We relied on a synthetic
dataset to simulate different errors independently and evalu-
ate them quantitatively. The synthetic camera had 256×256
pixels with 56.2475°of the horizontal and vertical field of
view. We took a similar way to that in (Xiao et al., 2018).
Namely, each scene consists of randomly placed 3D objects
from the Thingi10K dataset (Zhou and Jacobson, 2016). We
created 120 scenes in total and separated them into 80, 20,
and 20 scenes for training, validating, and testing the net-
work, respectively.

We also prepared a real-scene dataset for qualitative
evaluations. We used a DSLR (Canon EOS 6D equipped
with SIGMA 50mm F1.4 DG HSM) to capture real-scene
focal stack videos. During the capture, the f-number, im-
age resolution, and frame rate were 1.8, 1920×1080 pixels,
and 30fps, respectively. We photographed three scenes with
(dmin,dmax) ∈ {(0.4,0.5),(0.6,1.2),(0.8,1.5)}.

4.2 Metrics

We calculated the peak signal-to-noise ratio (PSNR), struc-
tural similarity index measure (SSIM), and learned percep-
tual image patch similarity (LPIPS) (Zhang et al., 2018) be-
tween the ground truth images and MPI renderings.

4.3 Training Details

We implemented our deep neural network using the Py-
Torch framework (Paszke et al., 2019) v2.1.0. To train

our network, we used a desktop computer consisting of In-
tel(R) Xeon(R) W-3235 CPU @ 3.30GHz, 128GB RAM,
and NVIDIA Titan RTX 24GB VRAM. To generate all the
results in this paper, we used a desktop computer consisting
of Intel(R) Core(TM) i7-6950X CPU @ 3.00GHz, 128GB
RAM, and NVIDIA GeForce RTX 3080 10GB VRAM.

We trained our network using the RMSprop optimizer
with a learning rate of 10−4, a weight decay 10−8, momen-
tum 0.9, 4 batch size, and 614 epochs. We fixed the number
of depth layers to N = 32, dmin to 1.0 meters, and dmax to
10.0 meters.

4.4 Designing Ring Rotation Errors

To quantitatively evaluate the impact of ring rotation errors
on MPI rendering quality, we modeled the ideal rotations
for both rotation strategies and those with potential errors
associated with each strategy. The focus distances for all
frames during a sweep from dmin to dmax were obtained
through simulation. We then generated a synthetic focal
stack by sampling N focus distances from the focus dis-
tances of all frames, which was used as input for the net-
work. The first rows of Figure 7 show the simulated focus
distances of all frames and sampled distances.

Continuous-rotation. With an ideal continuous rota-
tion, the focus distance is expected to step linearly by δv =
0.003 in inverse depth per frame from the minimum focus
distance dmin until it reaches the maximum focus distance
dmax. For variations, we redefine the increment with a Gaus-
sian noise as δv = N(vmean,vstd), where vmean = 0.003 and
vstd = {0.001,0.002,0.003}. The increment never went be-
low 0 m. We further introduce a pause at i = {50,150,250}
frame for early, middle, and late stops to simulate a scenario
where the user stops rotating the ring for a short interval,
p = 50 (i.e., the focus remains the same between i and i+ p
frames). The ideal ring rotation ends at 300 frames (= 10 s).

Delta-rotation. The ideal delta rotation increases the
focus distance by a step δv = 0.003 or 0.045 in inverse
depth at every s = 15 frame from the minimum focus dis-
tance dmin until it reaches the maximum focus distance
dmax. Similarly to the continuous rotation, we redefine the
increment as a Gaussian noise, δv = N(vmean,vstd), with
vmean = {0.003,0.045} and vstd = {vmean × 1/3,vmean ×
2/3,vmean ×1}. The increment never went below 0 m.

4.5 Results

Synthetic-scene results. Figure 7 shows MPI render-
ing results in the synthetic dataset. Table 1 summarizes the
metric values of all variants evaluated in the dataset. The
continuous rotation exhibits fewer errors than the delta ro-
tation, which takes quantized rotation steps and focus dis-
tances, especially when the step size is large, vmean = 0.045,
but as fast as the continuous rotation approach. Both ap-
proaches are affected more by the larger inserted noises.

The stops in the continuous rotation affected the qual-
ity regardless of the frame at which the pause was intro-
duced. The rendering results from the center viewpoint
(Figure 7(a), the fourth column) reveal that the quality of



Figure 7: MPI rendering results under different rotation strategies. (a) The results of the continuous rotation. (b) The results
of the delta rotation. (1st rows) Plots of focus distances. The red and blue plots show metric and inverse depth distances,
respectively. (2nd rows) MPI rendering results from the center view. Cropped areas from Figure 6(a). (3rd rows) Epipolar
images. 11 views on the horizontal line through the center view (the yellow rectangles in Figure 6(b)) were used.

the stop variants is inferior to those with rotation noises
(Figure 7(a), the third column), exhibiting more blurry areas
and low-contrast colors.

The delta rotation shows a similar quality to that of the
continuous rotation if a long enough time is given to pho-
tograph (4000 frames as in Figure 7(b), the first column).

However, the quality significantly decreases when the time
to photograph is limited (300 frames as in Figure 7(b), the
third column).

The Epipolar images represent disparities and show
successful reconstructions of disparities with no noise and
quality degradation under noise.



Table 1: Quantitative evaluation in PSNR, SSIM, and LPIPS over the MPI renderings at nine viewpoints shown as the red and
blue rectangles in Figure 6(b). Mean and standard deviation values are calculated for reference.

Focus ring modulation vmean vstd PSNR (↑) SSIM (↑) LPIPS (↓)
C

on
tin

uo
us

-r
ot

. No noise 0.003 0.000 21.748 (2.856) 0.8422 (0.0406) 0.0992 (0.0269)
0.003 0.001 21.715 (2.839) 0.8385 (0.0413) 0.1006 (0.0272)

Rotation noise 0.003 0.002 21.609 (2.802) 0.8282 (0.0454) 0.1059 (0.0273)
0.003 0.003 21.549 (2.716) 0.8221 (0.0439) 0.1116 (0.0270)

Early stop 0.003 0.000 20.702 (2.870) 0.7372 (0.0822) 0.1230 (0.0305)
Middle stop 0.003 0.000 21.026 (2.649) 0.7754 (0.0629) 0.1282 (0.0288)
Late stop 0.003 0.000 19.733 (2.582) 0.6568 (0.0902) 0.1592 (0.0289)

D
el

ta
-r

ot
.

No noise 0.003 0.000 21.741 (2.846) 0.8408 (0.0408) 0.0999 (0.0271)
0.003 0.001 21.679 (2.847) 0.8340 (0.0426) 0.1017 (0.0271)

Rotation noise 0.003 0.002 21.690 (2.787) 0.8378 (0.0406) 0.1040 (0.0267)
0.003 0.003 21.398 (2.746) 0.8103 (0.0506) 0.1134 (0.0266)

No noise 0.045 0.000 21.609 (2.718) 0.8269 (0.0419) 0.1088 (0.0268)
0.045 0.015 21.257 (2.815) 0.7897 (0.0533) 0.1191 (0.0270)

Rotation noise 0.045 0.030 20.410 (2.236) 0.7139 (0.0656) 0.1780 (0.0264)
0.045 0.045 17.832 (2.557) 0.4662 (0.1369) 0.2221 (0.0315)

Figure 8: Varying noise ratios (vstd / vmean) in PSNR, SSIM, and LPIPS for continuous rotation and delta rotation.

Figure 8 shows the comparisons of the changes in met-
rics over varying noise ratios (vstd/vmean), which indicate
the degree of noise over the step size. Each line in the
continuous rotation (red line) has a different step mean of
vmean = {0.0015,0.003,0.006}, resulting in 600, 300, and
150 frames. Each line in the delta rotation (blue line) has the
same number of frames as the continuous rotation with the
same marker for s= 15 and vmean = {0.0225,0.045,0.090}.
Continuous rotations (red lines) are more stable than delta
rotations (blue lines) for any vmean and noise ratios.

Real-scene results. Figure 9 shows real-scene results.
In this evaluation, the camera was fixed on a tripod. The
setup was configured to ensure that dmin and dmax of rota-
tion remained consistent for both continuous and delta rota-
tions. For the delta rotation, we used a metronome to ensure
uniformity in the duration of rotations.

Note that these experiments are based on simulated
noises and do not explore actual usage by users. We plan
to conduct a user study, but it remains our future work.

5 APPLICATIONS

We demonstrate applications utilizing resultant MPIs from
real-scene focal stacks. The applications include depth ren-
dering, occlusion-aware defocus filtering, and de-fencing.

Depth rendering. Since the alpha value of each layer
represents the object certainties at the depth, assigning the
depth value to each layer pixels results in free-viewpoint
depth map rendering. Figure 10(a) demonstrates such a
depth rendering and the original color rendering.



Figure 9: Real-scene MPI rendering results from top-left views (the green rectangle with blue outlines in in green in Figure 6)
and bottom-right views (the pink rectangle with blue outlines in Figure 6) inside the lens aperture. We fixed the camera on a
tripod. With this setup, the results are nearly identical.

Occlusion-aware defocusing. Since the layers are ex-
plicitly separated along the camera forward-facing axis, we

can apply different blur kernels to different layers (i.e.,
depth-dependent blur kernels). This results in occlusion-



Figure 10: Three applications using MPI. (a) Depth rendering. Assigning depth values to individual layers, instead of colors
(top), results in a depth rendering (bottom). (b) Occlusion-aware defocusing. Since the scene is decomposed into layers at
depths, applying layer-dependent blur kernels can make occlusion-aware defocusing. The layers at the purple bear and the
layers except for them are blurred on the left and right, respectively. (c) De-fencing. Removing frontal layers can remove
objects that lay in the depths. One useful example is de-fencing, with which fences or lattices are removed. The computer
internal components are more visible, and the RTX logo is more legible after de-fencing (bottom) than the original (top).

aware defocus blur without any special care such as edge-
aware blur kernels. We validated two types of defocus:
foreground defocus, which blurs out the near layers, and
background defocus, which blurs out the far layers. The
target layers were blurred with a Gaussian filter with a ker-
nel size of 25 pixels. As demonstrated in Figure 10(b), the
results show that even after applying the blur kernels the
object boundaries are distinctly delineated.

De-fencing. Removing frontal objects is easy with MPI.
Removing frontal layers can remove objects that lay in
the depths. One useful example is de-fencing, with which
fences or lattices occluding the backgrounds are removed.
We took a focal stack from outside the computer to cover the
depth of the computer. Though the computer internal com-
ponents and the RTX logo were partially occluded by the
cover, these became more visible after removing the frontal
layers as shown in Figure 10.

6 CONCLUSION

This paper demonstrated a pipeline to generate MPI from a
casually photographed focal stack. We proposed two pos-
sible focal stack photography strategies and quantitatively
and qualitatively evaluated them using a synthetic dataset.
We also demonstrated our system using real-scene focal
stacks. Our results suggest that the continuous rotation is
advantageous over the delta-rotation, especially when the
time to photograph is limited. Finally, we showed three ap-
plications utilizing generated MPI.

One of the major limiting factors of our approach is
the non-local image alignment in a focal stack that omits
moving objects and strongly appearing disparities caused
by camera shakes from the assumption. Another point is
the validity of our simulated errors in focal stack photogra-
phy. Therefore, future work includes user-involved studies

where we collect various participants who actually control a
camera focus ring. We are also interested in applying pixel-
wise focal stack image alignment and designing an efficient
network architecture for faster MPI inference.
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